618 research outputs found

    Vote Bying I: General Elections

    Get PDF
    We examine the consequences of vote buying, assuming this practice were al- lowed and free of stigma. Two parties compete in a binary election and may purchase votes in a sequential bidding game via up-front binding payments and/or campaign promises (platforms) that are contingent upon the outcome of the elec- tion. We analyze the role of the parties' and voters' preferences in determining the winner and the payments to voters.vote buying, political economy, campaign promises.

    Vote Buying II: Legislatures and Lobbying

    Get PDF
    We examine the consequences of lobbying and vote buying, assuming this prac- tice were allowed and free of stigma. Two "lobbyists" compete for the votes of legislators by offering up-front payments to the legislators in exchange for their votes. We analyze how the lobbyists' budget constraints and legislator preferences determine the winner and the payments.vote buying, lobbying, legislatures, political economy.

    Vote Buying

    Get PDF
    We examine the consequences of vote buying, assuming this practice were allowed and free of stigma. Two parties competing in a binary election may purchase votes in a sequential bidding game via up-front binding payments and/or campaign promises (platforms) that are contingent upon the outcome of the election. We analyze the role of the parties' budget constraints and voter preferences in determining the winner and the payments to voters.vote buying, elections, campaign promises

    Evidence for a Positive Cosmological Constant from Flows of Galaxies and Distant Supernovae

    Full text link
    Recent observations of high-redshift supernovae seem to suggest that the global geometry of the Universe may be affected by a `cosmological constant', which acts to accelerate the expansion rate with time. But these data by themselves still permit an open universe of low mass density and no cosmological constant. Here we derive an independent constraint on the lower bound to the mass density, based on deviations of galaxy velocities from a smooth universal expansion. This constraint rules out a low-density open universe with a vanishing cosmological constant, and together the two favour a nearly flat universe in which the contributions from mass density and the cosmological constant are comparable. This type of universe, however, seems to require a degree of fine tuning of the initial conditions that is in apparent conflict with `common wisdom'.Comment: 8 pages, 1 figure. Slightly revised version. Letter to Natur

    Cosmological Parameters from Velocities, CMB and Supernovae

    Get PDF
    We compare and combine likelihood functions of the cosmological parameters Omega_m, h and sigma_8, from peculiar velocities, CMB and type Ia supernovae. These three data sets directly probe the mass in the Universe, without the need to relate the galaxy distribution to the underlying mass via a "biasing" relation. We include the recent results from the CMB experiments BOOMERANG and MAXIMA-1. Our analysis assumes a flat Lambda CDM cosmology with a scale-invariant adiabatic initial power spectrum and baryonic fraction as inferred from big-bang nucleosynthesis. We find that all three data sets agree well, overlapping significantly at the 2 sigma level. This therefore justifies a joint analysis, in which we find a joint best fit point and 95 per cent confidence limits of Omega_m=0.28 (0.17,0.39), h=0.74 (0.64,0.86), and sigma_8=1.17 (0.98,1.37). In terms of the natural parameter combinations for these data sigma_8 Omega_m^0.6 = 0.54 (0.40,0.73), Omega_m h = 0.21 (0.16,0.27). Also for the best fit point, Q_rms-ps = 19.7 muK and the age of the universe is 13.2 Gyr.Comment: 8 pages, 5 figures. Submitted to MNRA

    Can gravitational infall energy lead to the observed velocity dispersion in DLAs?

    Full text link
    The median observed velocity width v_90 of low-ionization species in damped Ly-alpha systems is close to 90 km/s, with approximately 10% of all systems showing v_90 > 210 km/s at z=3. We show that a relative shortage of such high-velocity neutral gas absorbers in state-of-the-art galaxy formation models is a fundamental problem, present both in grid-based and particle-based numerical simulations. Using a series of numerical simulations of varying resolution and box size to cover a wide range of halo masses, we demonstrate that energy from gravitational infall alone is insufficient to produce the velocity dispersion observed in damped Ly-alpha systems, nor does this dispersion arise from an implementation of star formation and feedback in our highest resolution (~ 45 pc) models, if we do not put any galactic winds into our models by hand. We argue that these numerical experiments highlight the need to separate dynamics of different components of the multiphase interstellar medium at z=3.Comment: 12 Pages, 9 Figures, accepted to ApJ, printing in colour recommende

    CGM properties in VELA and NIHAO simulations; the OVI ionization mechanism: dependence on redshift, halo mass and radius

    Full text link
    We study the components of cool and warm/hot gas in the circumgalactic medium (CGM) of simulated galaxies and address the relative production of OVI by photoionization versus collisional ionization, as a function of halo mass, redshift, and distance from the galaxy halo center. This is done utilizing two different suites of zoom-in hydro-cosmological simulations, VELA (6 halos; z>1z>1) and NIHAO (18 halos; to z=0z=0), which provide a broad theoretical basis because they use different codes and physical recipes for star formation and feedback. In all halos studied in this work, we find that collisional ionization by thermal electrons dominates at high redshift, while photoionization of cool or warm gas by the metagalactic radiation takes over near z∌2z\sim2. In halos of ∌1012M⊙\sim 10^{12}M_{\odot} and above, collisions become important again at z<0.5z<0.5, while photoionization remains significant down to z=0z=0 for less massive halos. In halos with Mv>3×1011 M⊙M_{\textrm v}>3\times10^{11}~M_{\odot}, at z∌0z\sim 0 most of the photoionized OVI is in a warm, not cool, gas phase (Tâ‰Č3×105T\lesssim 3\times 10^5~K). We also find that collisions are dominant in the central regions of halos, while photoionization is more significant at the outskirts, around RvR_{\textrm v}, even in massive halos. This too may be explained by the presence of warm gas or, in lower mass halos, by cool gas inflows

    Luminescence from highly excited nanorings: Luttinger liquid description

    Full text link
    We study theoretically the luminescence from quantum dots of a ring geometry. For high excitation intensities, photoexcited electrons and holes form Fermi seas. Close to the emission threshold, the single-particle spectral lines aquire weak many-body satellites. However, away from the threshold, the discrete luminescence spectrum is completely dominated by many-body transitions. We employ the Luttinger liquid approach to exactly calculate the intensities of all many-body spectral lines. We find that the transition from single-particle to many-body structure of the emission spectrum is governed by a single parameter and that the distribution of peaks away from the threshold is universal.Comment: 10 pages including 2 figure

    A Survey on Approximation Mechanism Design without Money for Facility Games

    Full text link
    In a facility game one or more facilities are placed in a metric space to serve a set of selfish agents whose addresses are their private information. In a classical facility game, each agent wants to be as close to a facility as possible, and the cost of an agent can be defined as the distance between her location and the closest facility. In an obnoxious facility game, each agent wants to be far away from all facilities, and her utility is the distance from her location to the facility set. The objective of each agent is to minimize her cost or maximize her utility. An agent may lie if, by doing so, more benefit can be obtained. We are interested in social choice mechanisms that do not utilize payments. The game designer aims at a mechanism that is strategy-proof, in the sense that any agent cannot benefit by misreporting her address, or, even better, group strategy-proof, in the sense that any coalition of agents cannot all benefit by lying. Meanwhile, it is desirable to have the mechanism to be approximately optimal with respect to a chosen objective function. Several models for such approximation mechanism design without money for facility games have been proposed. In this paper we briefly review these models and related results for both deterministic and randomized mechanisms, and meanwhile we present a general framework for approximation mechanism design without money for facility games
    • 

    corecore